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Abstract: We introduce UMI-on-Legs, a new framework that combines real-world
and simulation data for quadruped manipulation systems. We scale task-centric data
collection in the real world using a hand-held gripper (UMI), providing a cheap way to
demonstrate task-relevant manipulation skills without a robot. Simultaneously, we scale
robot-centric data in simulation by training whole-body controller for task-tracking with-
out task simulation setups. The interface between these two policies is end-effector tra-
jectories in the task frame, inferred by the manipulation policy and passed to the whole-
body controller for tracking. We evaluate UMI-on-Legs on prehensile, non-prehensile,
and dynamic manipulation tasks, and report over 70% success rate on all tasks. Lastly,
we demonstrate the zero-shot cross-embodiment deployment of a pre-trained manip-
ulation policy checkpoint from prior work, originally intended for a fixed-base robot
arm, on our quadruped system. We believe this framework provides a scalable path
towards learning expressive manipulation skills on dynamic robot embodiments. Please
checkout our website for robot videos, code, and data: https://umi-on-legs.github.io/
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Fig 1: UMI-on-Legs. We achieve fully autonomous, expressive, real-world manipulation skills on
quadrupeds by combining real-world demonstrations using hand-held grippers (left) and simulation-trained
whole-body controllers (right). Our framework allows the porting of existing “table-top” manipulation
policies to mobile manipulation while enhancing mobility and power from the quadruped’s legs.

1 Introduction
Collecting robot data in simulation versus in the real world are two distinct pathways for scaling up robot
learning approaches, each with its challenges. Real-world robot teleoperation allows for direct human
demonstration of new tasks. However, it is often bottlenecked by the robot’s physical hardware – in
addition to the cost and safety concerns, the involvement of robot hardware usually makes the collected
data robot-specific (e.g., uses body commands) or even irrelevant whenever the robot’s physical form
changes. In contrast, simulation provides safe exploration and infinite resets for any new robot design.
However, it is often bottlenecked by the task diversity – accurately simulating diverse objects and their
dynamics and defining all tasks and their associated rewards remains a significant challenge.
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In this work, we introduce UMI-on-Legs, a quadruped manipulation system that demonstrates an
alternative way to combine real-world and simulation data:

• Scaling task-centric data in the real world without a robot: We propose using a hand-held gripper
(i.e., UMI [1]) to demonstrate task-centric data without requiring robot hardware. We model this
manipulation data using a diffusion policy [2] that is agnostic to the robot embodiment beyond the
end-effector. By allowing human operators to collect the data directly, we can easily capture a diverse
set of challenging tasks, bypassing the need for real-world robot trial-and-error.

• Scaling robot-centric data in simulation without task simulations: We train a whole-body controller
(WBC) in massively parallelized simulation [3–7], whose sim2real transfer to a wide range of terrain
conditions [7–9] is a well-studied problem. By training control policies to track end-effector trajectories
instead of interacting with objects, we can bypass the difficulty of setting up realistic manipulation
assets, engineering task rewards, and modeling object dynamics.

Fig 2: In-the-wild Manipulation, on Legs. Featur-
ing robust, low-latency iPhone odometry and onboard
power/ compute, our mobile manipulation system is
complete for in-the-wild mobile manipulation.

A critical design decision in the framework regards the
interface between these two policies – it must be sim-
ple enough for non-expert users to demonstrate yet ex-
pressive enough for complex manipulation skills. Most
prior legged manipulation systems use body velocity
commands with single-step body-frame end-effector
targets [8, 10–12], which are embodiment-specific (re-
quires robot during data collection) and insufficient to
represent complex, dynamic manipulation trajectories.
In this work, we propose to use end-effector trajectories
in the task-frame as the interface. Here, a manipulation
policy infers an end-effector trajectory from visual in-
puts, then passes the trajectory to a whole body controller
that infers embodiment-specific controls for execution.
This interface enables cross-embodiment generalization
beyond the gripper while providing additional preview
information to the WBC for anticipating future motions.

To support system deployment, we present an accessible, real-time odometry solution, based on the Apple’s
ARKit. Instead of assuming a tightly integrated and precisely calibrated/synchronized system [13–15], our
odometry approach takes the self-contained, compact form factor of an iPhone.

We tested UMI-on-Legs with complex tasks requiring prehensile actions (pick & place), non-prehensile
whole-body actions (weight pushing), and dynamic actions (tossing) in challenging scenarios with on-
board sensing and in-the-wild generalization. Thanks to our interface design, our asynchronous bi-level
policy formulation robustly executes these tasks, achieving over 70% on all tasks. In summary, the main
contributions of this work are:

• UMI-on-Legs, a framework for combining real-world and simulation data for training cross-embodiment
mobile manipulation systems, which provides a scalable path towards learning expressive manipulation
skills on dynamic robot embodiments. Namely, real-world data collected without any robots [1] can be
distilled into manipulation skills for different mobile robot platforms using robot-specific controllers.

• Within this framework, we propose a manipulation-centric whole-body controller, using an end-
effector trajectory interface. This simple interface enables zero-shot cross-embodiment deployment of
existing manipulation policies while being expressive enough to represent complex manipulation skills.

• A real-world deployment system featuring a real-time, robust, and accessible odometry approach
for in-the-wild task-space tracking, addressing a common bottleneck in achieving fast and precise
manipulation in mobile manipulation systems.
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Fig 3: Method Overview. Our system takes as input RGB images from a GoPro and infers a camera-frame
end-effector trajectory using a diffusion policy (a), trained using real-world UMI demonstrations. We
transform this trajectory into the task-space, and use it as the interface to the WBC. This controller (c)
outputs joint position targets at 50Hz, which PD controllers subsequently tracks.

2 Related Work
Mobile Pick-and-Place Systems. Prior works have demonstrated that pick&place quadrupeds trained
in simulation could be directly deployed in real [12, 16] with the aid of object detectors/segmentation
models for visual domain transfer. For wheeled-base systems, more challenging mobile manipulation skills
have been demonstrated when carefully engineered manipulation primitives are present [17–21], which
enables perception and planning [17, 20, 22] using foundation models [23–26], online-learning [18, 19],
or trajectory optimization [21]. To alleviate the manual design of observation and action spaces, Mobile-
ALOHA [27] proposed a wheeled-bimanual platform for demonstration collection. However, all these
systems assume quasi-static manipulation and/or heavy bases with a low center-of-mass.

Learning-based Controllers for Robot-specific Teleoperation. From learning dynamic locomotion
skills [6, 28–30] to manipulation skills [31–33], reinforcement learning [34] (RL) with massively parallel
simulators [3, 7] is the dominant paradigm for tackling challenging control problems in legged robots. To
deploy these controllers, there exists a body of work for domain adaptation [7–9] to varying embodiments
and environmental conditions. Towards supporting mobile-manipulation on quadrupedal systems, prior
works have also explored training whole-body controllers [8, 10, 11]. However, beyond simplified scenarios
using April-Tags [35], these prior whole-body control quadruped systems require human users to perform
manipulation (teleoperation, demonstration replay). Although fully-autonomous execution is theoretically
feasible, there are high practical costs in collecting enough data for learning effective manipulation skills.
These practical challenges stem from the dependence on robot-specific commands (e.g., body velocity
commands) and/or the requirement on the physical presence of the robot during data collection. Concurrent
and similar to our work, He et al. combines a behavior-cloned policy and an RL controller with a task-frame
trajectory interface. However, they use the controller to heuristically generate robot-specific demonstrations
in simulation. Their algorithmic design is limited in terms of scalability (demonstrations are robot/controller
specific), and usability/expressivity (task-specific heuristic demonstration generation). Further, their system
design is constrained by a tethered setup with an external camera, since they rely on April Tag tracking.

Cross-embodiment Manipulation. Towards more performant, generalizable, and robust manipulation,
a large body of work on behavior cloning has innovated on policy architectures [2, 37–41], sensor
placements [37], action spaces [38], data quality [37, 42], data size [43–47], and data cost [1, 27, 38, 48,
48, 49]. From this well-studied space, some core design decisions have emerged as dominant options,
including the usage of pre-trained visual encoders [1, 25, 43], a diffusion-based action decoding process [1,
2, 27, 41, 43, 47, 49], and end-effector sequence prediction [1, 38, 41, 43, 47, 49]. Further, when used with
only ego-centric/wrist-mounted visual observations, Yang et al. and Chi et al. has demonstrated zero-shot
cross embodiment visuo-motor policy transfer. However, by predicting sequences of target poses, they
assume perfect lower-level controllers capable of precisely tracking these targets.

3 Method: Universal Manipulation Interface on Legged Robots
UMI-on-Legs (Fig 3) comprises of two main components: (1) a high-level diffusion-based manipulation
policy [2] which takes as input wrist-mounted camera views and outputs sequences of end-effector pose
targets into the future in the camera frame, and (2) a low-level whole-body controller which tracks end-
effector pose targets by outputting joint position targets for both the legs and arm. We train the manipulation
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Fig 4: Task- v.s. body-frame tracking. Our whole-body controller (WBC) learns to track the target
trajectory in task-frame (a), effectively compensating base perturbations and, therefore, frees up the
manipulation policy to focus on making task progress. In contrast, most of existing WBCs use body-frame
tracking (b)[8, 10–12], trained to follow base perturbations. In effect, they defer task-space tracking
responsibilities to the low-rate manipulation policy and fail to react quickly to body perturbations.

policy using data collected in the real world using UMI [1], a hand-held gripper data collection device and
train the WBC entirely in simulation using massively parallelized simulators [3].

Our choice of using task-frame end-effector trajectories as the interface has the following benefits:

• Intuitive demonstration: Using end-effector trajectories instead of robot-specific low-level actions, we
allow intuitive task demonstration by non-expert users using hand-held devices like UMI [1].

• High-level intention from preview horizon: With the preview horizon of future targets, the whole
body controller can anticipate upcoming movements. For instance, the robots should brace accordingly
if a high-velocity toss is coming up. Meanwhile, if the target is moving within the arm’s reach range,
the body should lean instead of taking a step, which risks shaking the end effector.

• Precise and stable manipulation in the task-frame: Unlike most of legged manipulation systems
that uses body-frame tracking, our controller tracks action in the task-space (Fig 4) that is persistent
regardless of base movement, enabling precise and stable manipulation.

• Asynchronous multi-frequency execution: The interface defines a natural inference hierarchy that
allows a low-frequency manipulation policy (1-5Hz) to coordinate with a high-frequency low-level
controller (50Hz) for handling drastically different sensor and inference latencies.

• Compatible with any trajectory-based manipulation policy: Our interface supports the plug-and-play
of any trajectory-based manipulation policy [1, 38, 41, 43, 47, 49]. With the rise of policies trained on
diverse datasets [43–47], our manipulation-centric WBC can accelerate the porting of existing “table-top”
manipulation skills to “mobile” manipulation.

3.1 Manipulation Policy with Behavior Cloning
Following the default configuration from Chi et al., we use a U-Net [50] architecture diffusion policy [2]
(Fig 3a) with the DDIM scheduler [51] and a pre-trained CLIP vision encoder [25]. We use a longer
action horizon of 64 to provide more information into the future for the low-level controller. For our cup
rearrangement task, we directly use UMI [1]’s cup rearrangement checkpoint. For the pushing and tossing
task, we collect data and train diffusion policies from scratch.

3.2 Whole-body Controller with Reinforcement Learning
To track end-effector trajectories predicted from the manipulation policy, we propose to train a whole body
controller with reinforcement learning in simulation to infer arm and leg joint targets. Notably, setting up a
simulation to track these manipulation end-effector trajectories does not require setting up the manipulation
task and environment. This design greatly alleviates a key bottleneck in using simulation data.

Task-frame trajectory tracking of manipulation trajectories. Prior works [8, 10–12] typically sample
target end-effector poses in body-frame to train their WBCs, which simplifies policy optimization but
does not train the controller whole-body coordination skills required to compensate body movements and
perturbations (Fig 4b). This issue is amplified in scenarios where the arm’s momentum during manipulation
causes significant base movements (i.e., light-weight base, or dynamic arm movements) In contrast, we
train our controller to track pose trajectories in the task-frame (Fig 3a). This formulation teaches the arm
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maintain its end-effector pose in task-frame by compensating and cancelling out body movements or shakes.
To provide the controller with relevant reference trajectories, we use trajectories collected with UMI [1].

Observation Space. The observation space includes robots’ 18 joint positions and velocities, the base
orientation and angular velocity, the previous action, and the end-effector trajectory inferred by the
manipulation policy. We represent end effector pose using a 3D vector for the position and the 6D rotation
representation [52]. We densely sample target poses from -60ms to 60ms at 20ms interval relative to the
current time, which informs the controller of current velocity and acceleration. In addition, we include the
target 1000ms into the future, which helps the controller prepare to take foot steps if necessary.

Rewards. The task objective rewards the policy for minimizing the position error ϵpos and orientation error
ϵorn to the target pose: exp(−(

ϵpos

σpos
+ ϵorn

σorn
)) where σ are scaling terms according to precision requirement.

In this formulation, the term for position and orientation are entangled. We observe that this leads to
more ideal behavior than separate position and orientation terms, which causes the policy to achieve high
precision in only either position or orientation. We also observed that a σ curriculum for both position
and orientation is necessary to enable exploration during the early stage of training while forcing the
policy to achieve high precision in the later stages. On top of the main task reward, we follow common
conventions [7–9, 12] and include extra regularization and shaping terms, detailed in the supp. material.

Policy network architecture. We train a multi-layer perceptron (MLP) controller which maps from
observations to target joint positions for both the legs (12 DOF) and the arm (6 DOF) (Fig 3c). A
forward pass for this controller takes ≈0.06ms on the robot’s on-board CPU, and is called at 50Hz during
deployment. The joint position targets are tracked using separate PD controllers for the legs and the arm.

3.3 System Integration
Robot system setup. The robot system (Fig. 2) consists of a 12-DOF Unitree Go2 quadruped robot and a
6-DOF ARX5 robot arm, both powered by the battery of Go2. We customize the ARX5 arm with Finray
grippers and a GoPro to match the UMI gripper [1]. Our whole-body controller runs on the Go2’s Jetson
while our diffusion policy inference runs on a separate desktop’s RTX 4090 over an internet connection.
We mount an iPhone for pose estimation and connect it to the Jetson through an Ethernet cable.

Sim2Real transfer. Following prior works, we add random push force on the robot during training to
achieve better robustness. We randomize joint friction, damping, contact frictions, body and arm masses
and center of masses. We also observed that it was crucial to model 20ms of control latency during training.
To account for noises in the odometry system, we randomly transport the robot every 20 seconds mid-way
through the episode. More details can be find in appendix.

Accessible real-time odometry. The lack of real-time onboard task-space tracking is a common limitation
in prior quadruped manipulation works. By assuming external tracking with motion capture [31] and/or
AprilTags [8, 11, 36], their systems can’t be deployed fully-autonomously in the wild. In our system, we
address this drawback with an iPhone, mounted on the robot’s base. Our choice of the rear mounting site
avoids adding extra weight on the robot arm, prevents arm-phone collisions, and minimizes motion blur and
visual occlusion. In contrast to many existing robust, real-time odometry solutions [13–15], our odometry
solution has a self-contained, compact form-factor and uses only ubiquitous consumer electronic devices.

4 Experiments
We designed a series of experiments in simulation and the real world to validate our key design decisions,
which aims to answer the following key questions:

• Capability. Is our system UMI-on-Legs able to learn complex and challenging manipulation skills such
as whole-body dynamics actions (e.g., tossing)?

• Robustness. Can our whole-body controller handle unexpected external perturbations and object dynam-
ics, encountered during manipulation?

• Scalability. Can we use cross-embodiment manipulation data collected entirely absent of the robot?

Metrics. In simulation, we report average position error (cm), orientation error (radians), survival (%), and
electrical power usage (kW) over 500 episodes. In real-world experiments, we report average success rate
over 20 episodes.
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Fig 5: Dynamic tossing requires dynamics whole-body coordination. Our controller (top row) discovers a strategy
to toss reliably given its limited arm strength and body inertia, which involves three stages. First, as the arm accelerates
forward, the back legs pops up, leading to a leap and toss motion (a, green). To prevent falling forwards, the robot tucks
and curls its arms and legs inwards (b, orange), inducing a backwards torque. This backwards torque helps shift the
front legs’ contact points forwards in front of its center-of-mass, enabling a soft landing. In contrast, the controller with
no preview information (bottom row) leaps in an attempt to follow the fast target acceleration forwards, but doesn’t
know where the target will go next, thus, dropping the ball. Please checkout our website robot videos!

Comparisons. We ablate our design choices for the WBC in Table 1. Starting with our approach, we
remove preview (i.e., trajectory observations), task-frame tracking formulation, and manipulation trajectory
training trajectories. Removing all three simultaneously leads to a baseline similar to DeepWBC [8]. To
investigate the efficacy of our iPhone-based odometry system, we compare against an OptiTrack motion
capture system in all our real-world experiments, which serves as the oracle odometry. For real-world
tossing, we also show the no-preview baseline’s behavior in real (Fig. 5). Finally, for robot videos for all
tasks, please check the supplementary materials.

4.1 Capability: Whole-Body Dynamic Tossing
Our first experiment aims at validating the system’s capability, i.e., whether our policy interface can capture
complex manipulation skills. To answer this question, we chose a particularly challenging task – dynamic
tossing. The robot must toss pre-grasped balls towards a target bin 90cm away, where a trial is successful
if it lands within 40cm of bin’s center.

Task difficulties. Most of existing tossing systems assume a carefully designed primitive [17, 53]. Recently,
Chi et al. [1] demonstrated that learning from hand-held gripper demonstrations results in equally capable
tossing skills, but has only been shown to work with a fixed-based robot arm with a precise controller.
For legged systems, reliable tossing depends on the body placement and the tossing motion. Thus, in
order to achieve a successful toss, the controller must discover the right stance, utilize power from all of its
degrees of freedom, and learn the dynamic whole-body coordination required to achieve precise tracking
throughout the dynamic tossing motion.

Approach Pos Err Orn Err Survival Power
Units cm↓ deg↓ % ↑ kW↓
Ours 2.12 3.35 98.4 3.82
(-) Preview 3.02 4.23 93.0 3.95
(-) Task-space 15.49 15.55 0.0 4.74
(-) UMI Traj 2.48 15.67 97.4 3.69
DeepWBC [8] 22.2 66.22 0.0 5.92

Table 1: Tossing Evaluation in Sim. Averaged
over 500 tossing episodes.

Dynamic tossing requires dynamic whole-body
coordination. By learning to track tossing trajecto-
ries, our whole-body controller discovered a whole-
body tossing strategy (Fig 5). The motion requires
dynamic whole-body coordination, involving power
from all joints during the toss, momentarily balanc-
ing on one foot/two feet, and effective usage of body
mass inertia to regain balance. Overall, our system
achieves 75% and 70% when using motion capture
and iphone odometry, respectively.

Effects of the interface design. From our ablations and baseline comparisons (Table 1), we observed
that training on task-frame manipulation trajectories was crucial - removing either task-frame tracking or
manipulation trajectories ((-) Task-space and (-) UMI Traj) significantly hurts position and/or orientation
precision. Meanwhile, removing trajectory information from the WBC’s observation prevents the controller
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Fig 6: Robustness to Unexpected Dynamics. When faced with unexpected resistance from the kettlebell’s friction,
our controller continuously tries to push forwards. This leads to a wiggling motion along with increased pushing
force until static friction breaks into a dynamic slide, at which point the robot catches itself by dropping its front feet
forwards. We observed this push-and-catch strategy while the robot pushes both 10lbs and 20lbs (b), despite the latter
succumbing to static friction more often. We also report comparable performance with the motion capture oracle (c).

from anticipating future motions, resulting in dangerous reaching behaviors (−5.4% survival) and more
jittery actions (+130W ) compared to our approach, as demonstrated in Fig 5.

Failure analysis. Despite the highly-dynamic nature of this motion, the controller manages safe landings
during all motion capture evaluation trials. To further investigate whether tossing misses were due to
imprecise WBCs or noisy end-effector trajectories, we tested our controller with calibrated tossing trajectory
replay with motion capture, which effectively acts as an “oracle” manipulation policy, and report a +10%
improvement (Fig. 5). We hypothesize that scaling up tossing data collection further could close this gap.

4.2 Robustness: End-effector Reaching Leads to Robust Whole-body Pushing
Our second task stress tests the controller’s ability to handle unexpected and unseen external dynamics in
zero-shot fashion. To evaluate this capability we studied kettlebell pushing (Fig 6), where goal of this
task is to push a 10lbs kettlebell, such that it slides upright into a goal region. Between each episode, the
kettlebell’s distance from its goal is varied within the range [80cm,120cm].

Task Difficulties. Although the end effector motion involved may be simple, the whole body controller
need to adapt to significantly changed dynamic models. In order to be successful, the WBC must be robust
to feet slippage, overcome static friction, and adapt to when static friction suddenly breaks into a slide. In
addition, small imprecision in the pushing contact point could lead to the kettlebell toppling over.

Robustness to large disturbances. To our surprise, even with such a large disturbance, our controller was
able to maintain balance and finish the task, without ever training on simulated forces or weights. Our
controller completes the task with 95% and 90% success rates for motion capture and iPhone deployment
respectively. We observed that as soon as the WBC observes a larger position tracking error caused by the
weight, it changes its strategy to lean forward in order to exert more force - a strategy which would cause
the robot to fall forwards in absence of the kettlebell. By sending only end effector trajectories without any
base velocity, the controller can also move its legs forward to reach faraway target poses. In addition, we
also tested the policy with a 20lbs kettlebell, and observed 4 successful episodes out of 5.

Failure analysis. The most common failure case in this task was due to the kettlebell toppling sideways,
after which we halt the system. Although more human demonstrations could be collected to reorient the
kettlebell, the weight is too heavy for our arm to pick up again. Further, we observed that our hardware
system often overheats during this task’s evaluation, and requires frequent cool-down breaks. Besides the
obvious hardware improvement, we hypothesize training with simulated forces [10] could lead to more
elegant, energy efficient pushing behavior.

4.3 Scalability: Plug-and-play Cross-Embodiment Manipulation Policies
In our third experiment, we want to validate the feasibility of directly deploying a pre-trained manipulation
policy from a prior work [1] with our WBC without further fine-tuning, which demonstrates zero-shot
generalization to an unseen embodiment *. To evaluate this capability we studied the In-the-wild Cup

*Here zero-shot is defined with respect to manipulation policy, which is never trained with the target embodiment
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Fig 7: Making Existing Manipulation Policies Mobile. Although intended for fixed-based arms with larger reach
range and precise controllers (left, from Chi et al.), the In-the-wild cup rearrangement policy from Chi et al. was able
to achieve 80-85% success rates zero-shot on our quadruped system with our learned whole-body controller (center).
We observed that our controller learned a tilted stance, which minimizes front leg torque usage by delegates more mass
from the front-heavy system to the back legs.

Rearrangement Task proposed in Chi et al.. The goal of this task is to place an espresso cup on its
saucer with its handle pointed to the left of the robot. In different episodes, the cup and saucer is randomly
positioned within a 20cm radius, with random cup orientation. Following Chi et al.’s definition, the task is
successful if the cup is upright on the saucer with its handle ±15◦ from pointing directly left. Notably, this
task is always evaluated in an unseen environment for both manipulation and whole-body controller.

Task difficulties. The biggest challenge for this task to effectively leverage cross-embodiment manipulation
data and policy. In the original UMI paper [1], the policy was trained on data collected by humans, and
intended for 6 DoF industrial robot arms (e.g., UR5 and Franka) with a static base and precise controllers.
In this experiment, we are directly deploying this pretrained policy on a drastically different embodiment
– an 18 DoF legged manipulator. Moreover, the intrinsic difficulty of the pushing and rearranging task
also tests the system ability to perform precise 6 DoF end-effector movements, including prehensile and
non-prehensile manipulation. This kind of precise and gentle actions have been traditional difficult for
low-cost legged manipulation systems.

Results and Findings. Without further finetuning of the manipulation policy, our system achieved 85% and
80% success rate using motion capture and iPhone odometry respectively, despite the cross-embodiment
gap. Since the manipulation policy was originally intended for a UR5e system with a larger kinematic
reach range than our ARX5 arm, it often predicts action sequences which span the large workspace. To
support the manipulation policy, we observe that our system dynamically tilts and leans its base in-order to
increase reach range and/or counterbalance the arm.

4.4 Limitations
Although we’ve demonstrated UMI-on-Legs’ capabilities on various manipulation skills, we observed
several limitations that could be addressed in future works. First, our system only enables gripper-based
manipulation, a limitation inherited from UMI [1]. However, with the rise of low-cost and portable whole-
body manipulation demonstration devices and whole-body manipulation quadruped works [31, 54, 55], an
interesting future direction would be to extend our interface to support scalable whole-body manipulation.
Second, despite the scalability of our embodiment-agnostic interface, incorporating embodiment-specific
constraints back up to the high-level manipulation policy is an important next step. Further, towards
a complete mobile manipulation platform, our system could be extended with abilities for collision
avoidance [56], force feedback and force-based control [10].

5 Conclusion

We introduce UMI-on-Legs, a framework that combines real-world human demonstrations and simulation-
based reinforcement learning. With task-frame end-effector trajectories as the interface, our formulation
allows intuitive demonstrations from hand-held devices yet is expressive enough to represent complex
manipulation skills such as dynamic tossing and pushing, and precise pick and place.

Although, as community, we’ve yet to have a unanimous foundation manipulation policy, we believe our
framework is an important step towards enabling the transfer of such policies to different robot platforms.
With an expressive embodiment-agnostic interface in place, we can separately develop ever more general
visuo-motor policies and robust WBCs, knowing that they can be plugged-and-played together in the end.
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7 Things that did not work

In this section, we discuss things we tried, but did not improve the performance or caused other issues. We
hope that through openly discussing our unsuccessful attempts, the community could gain a more complete
understanding of the project, learn from our mistakes, and improve upon our attempts.

7.1 Privileged policy distillation and observation history.

We tried to include privileged information (kp, kd, friction, damping, ground truth poses, base velocities,
etc.) to train a privileged policy and distill it through supervised learning and online regularization. However,
it didn’t provide performance boost and introduce instability when we include observation history longer
than 1 step. This could be because that the Python ROS2 timer is imprecise, thus the observation history
can easily be out of distribution given the wrong history timestamps. This was less of an issue on the
Unitree A1 platform, which ships with a real-time kernel.

7.2 Precise grasping for tossing.

To train diffusion policies for grasping and tossing, we collected 500 episodes of human demonstration.
However in the grasping phase, the small shakes from the controller results in distributional drift in visuo-
motor manipulation policy. We hypothesize that robust, fully-autonomous grasping and tossing could be
achieved with more data.

7.3 System Reliability for Fully-untethered Deployment.

Although the system is capable of various tasks in the real world without any external cables, the reliability
is in general not high enough. We summarize some hardware and system level challenges we encountered
as follows. Given a small base-to-arm weight ratio, the joints of the dog are likely to overheat in 10 to 30
minutes according to the robot posture and then goes to an error mode. Therefore, we needed to frequently
cool down the motors and fine-tune the policy to a more energy-efficient posture. On the power front, the
battery supplies different voltages depending on how full it is. When fully charged, the voltage is too high
for the arm, and the setup requires a voltage adaptor. When closer to empty, the policy’s behavior is more
dampened.

7.4 Velocity integration

We used the iOS ARKit to run VIO on an iPhone 15 Pro. However, the estimated camera pose sometimes
drift heavily under dynamic actions including tossing. We also measure the delay of the pose estimator.
Although the Ethernet communication time (between the iPhone and the onboard Jetson) is negligible, we
found the the latency from the movement to the pose update is still roughly 140ms. This latency introduced
a significant Sim2Real gap during deployment, which manifests as low frequency oscillations which slowly
diverges.

Using low-latency foot contacts, joint position/velocities, and IMU readings, we can estimate the base
velocity for each timestamp. Using base velocity estimates from 140ms into the past, we can integrate
every received iPhone pose forward in time by 140ms. However, the shaking behavior due to the latency is



not addressed, which can only be mitigated by higher action rate regularization fine-tuning. As the ARKit
pose estimation runs at 60Hz, we expect a better implementation could achieve shorter latency.

8 Deployment

In this section we elaborate important details in real-world deployment and Sim2Real transfer.

8.1 iPhone placement

We mounted the iPhone on the back of the robot with following considerations:1) Since the iPhone is
facing back, the robot arm will not be in the view during manipulation, so ARKit’s visual-inertial odometry
can better track the surrounding environment. 2) iphone is mounted at a fixed angle of 60◦ to the back
plane of the Go2, thus the camera is pointing upwards even when Go2 is slightly bending down. This
increases the number of visual features in the iPhone camera, thus provides more robust tracking compared
to our original design, which was a 90◦ mount. 3) This position is kinematically unreachable for the robot
arm, so the arm will unlikely damage the iPhone.

8.2 Robot URDF

For our highly dynamic tasks, we observed that the domain randomization and adaptive policies [8, 9]
were insufficient to bridge the gap between a heavily mis-specified model (provided by the manufacturer)
and the real system, a gap that is exacerbated when performing dynamic arm movements. We found that
disassembling the ARX5 arm, reweighing each component, and recomputing mass, center of mass and
inertia matrices in the URDF† were crucial for both simulation stability as well as successfully real-world
deployment.

8.3 Latency

While all observations and actions are perfectly synchronized in simulation, the communication and code
runtime of the real-world robot system introduce a significant amount of latency in different aspects.

The most important latency comes from the robot joint state observation and the joint command execution.
This includes the motor encoder readout, ROS2 communication, whole-body controller inference, action
sent back to motors and being executed on motors. Since we were unable to exactly measure all the latency
sources, we swept the end-to-end latency from 0ms to 30ms with 5ms interval in simulation and find
that 20ms works the best in our real-world system. We observed high frequency shaking if the latency is
mismatched in simulator and real-world robots.

Robot pose estimators (motion capture and iphone) also introduce latency. We observed an 8ms latency
from the motion capture system and 140ms latency from the iphone ARKit. We simulated a 10ms pose
latency in simulation to close the sim2real gap. We also implemented inertial-legged velocity estimation to
integrate the latest pose for iPhone, but the performance didn’t improve significantly. See 7.4 for detailed
explanation.

We also observe latency in the Python ROS2 program. Due to the global interpreter lock, all the Python
ROS2 callback functions have to run alternately, so one callback function will block the others if it takes
too long. We optimize the run time of all callback functions and detach the callback functions that take
too long to other ROS2 nodes. This allows the joint observation update to run closer to 200Hz and policy
inference closer to 50Hz. A C++ implementation with more precise timer and lower latency can achieve
better performance given the same checkpoint and evaluation setup.

†Download our code, data and checkpoints from our website.
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8.4 Safety

We observed that directly deploying the whole-body controller checkpoints in the simulation section led
to some safety issues and addressed them by fine-tuning the checkpoints with more conservative reward
schemes:

• Shaking: To reduce the shaking and oscillation behavior of the robot, we increased the action
rate regularization. The controller will get less reward if the predicted action is farther away from
the previous action. We also disabled the on board lidar that introduces shaking behavior.

• Overheat Shutdowns: The calf joint of the robot uses a linkage configuration rather than directly
applies the output torque. Therefore, the required output torque of the motor is higher than
the other joints, leading to frequent overheating and emergency shutdown. We observed that
increased torque regularization during training allows the controller to run up to 30 minutes
continuously‡

• Unsafe Configurations: In the simulator, the controller is likely to twist the legs to achieve
higher precision with less movements, but this makes it unsafe to deploy in the real world. We
added reward terms to regularize the body to a more balanced pose, so that the center of mass can
roughly stay in the center.

9 Training

9.1 Manipulation Policy

In this section, we report hyperparameters used for training our manipulation diffusion policy. Visual
observation and proprioception horizon means how many history image and robot states (with 0.1s interval)
are used as input to the policy. Output Steps means the action length of the diffusion policy output.
Execution Steps and Execution Frequency indicate how many steps of the diffusion policy output is actually
executed in the real-world robot. To enable more stable end-effector trajectory updates, we add linear
interpolation between the executed trajectory and the newly-updated trajectory for a duration of “Trajectory
Update Smoothing Time”.

9.2 Whole-Body Dynamic Tossing

We increased the inference and execution steps for a smoother toss, since the trajectory is less likely to
update during the dynamic toss. We also increased the execution frequency to get farther toss. Please refer
to Table 2 for detailed parameters.

Hyperparameters Values
Training Set Trajectory Number 500
Diffusion Policy Visual Observation Horizon 2
Diffusion Policy Proprioception Horizon 4
Diffusion Policy Output Steps 64
Diffusion Policy Execution Steps 40
Diffusion Policy Execution Frequency 12Hz
Trajectory Update Smoothing Time 0.1s

Table 2: Hyper parameter set of the dynamic tossing task.

‡Please check out evaluation videos on our website, which shows our controller running continuously for 20-30
minutes.
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9.3 End-effector Reaching Leads to Robust Whole-body Pushing

Since the trajectory motion is much simpler, we collected fewer human demonstrations for the diffusion
policy. We increased the “Trajectory Update Smoothing Time” to prevent heavy shakes due to the trajectory
update. Please refer to Table 2 for detailed parameters.

Hyperparameters Values
Training Set Trajectory Number 25
Diffusion Policy Visual Observation Horizon 2
Diffusion Policy Proprioception Horizon 2
Diffusion Policy Output Steps 32
Diffusion Policy Execution Steps 10
Diffusion Policy Execution Frequency 10Hz
Trajectory Update Smoothing Time 0.3s

Table 3: Hyper parameter set of the whole-body pushing task.

9.4 Plug-and-play Cross-Embodiment Manipulation Policies

As the UMI cup rearrange task requires much higher precision but is quasi-static, we decreased the
execution frequency for better stability. As mentioned in the main text, we directly use the publicly released
checkpoint from Chi et al.. We did not collect any extra data for this task.

Hyperparameters Values
Training Set Trajectory Number 1400
Diffusion Policy Visual Observation Horizon 1
Diffusion Policy Proprioception Horizon 2
Diffusion Policy Output Steps 16
Diffusion Policy Execution Steps 8
Diffusion Policy Execution Frequency 5Hz
Trajectory Update Smoothing Time 0.1s

Table 4: Hyper parameter set of the UMI cup rearrangement task.

9.5 In-the-wild Cup Rearrangement Evaluation

We evaluated the whole-body controller on the cup rearrangement task in the wild. We tested it in some
challenging scenarios including unstable terrain (grass, dirt, collapsible table), direct sunlight which made
the robot easily overheated, and unseen tables and cups to show the generalizability of the diffusion policy.
Please checkout the supplementary video for more details.

9.6 Reward Terms

During RL training of the whole body controller, we include the following reward terms:

• Joint Limit, Joint Acceleration, Joint Torque, Root Height, Collision, Action Rate: We use
the same definition as prior works [7, 8].

• Body-EE Alignment: We regularize joint 0 and joint 3 of the arm (the joints that mostly affect
the yaw angle of the gripper) to stay close to their initial pose. This allows the arm to be aligned
with the body.

• Even Mass Distribution: We regularize the standard deviation of the force of the four feet to be
lower. The motors are less likely to overheat if the body mass is distributed more evenly on the
four legs.
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• Feet Under Hips: We regularize the feet’s planar position to be close to that of their respective
hips, for all four legs. This regularization improves the stability of the standing pose.

• Pose Reaching: We minimize the position error ϵpos and orientation error ϵorn to the target pose
using an unified reward function: exp(−(

ϵpos

σpos
+ ϵorn

σorn
)). We apply σ curriculum to the reward

functions: as the error get smaller, we decrease σ for a more peaky reward function, which encour-
ages the controller to further reduce reaching error. σpos is set to [2,0.1,0.5,0.1,0.05,0.01,0.005]
when the position error is smaller than [100,1.0,0.8,0.5,0.4,0.2,0.1] respectively; σorn is set to
[8.0,4.0,2.0,1.0,0.5] when the orientation error is smaller than [100.0,1.0,0.8,0.6,0.2] respectively.

Name Weight
Joint Limit -10
Joint Acceleration -2.5e-7
Joint Torque -1e-4
Root Height -1
Collision -1
Action Rate -0.01
Body-EE Alignment -1
Even Mass Distribution -1
Feet Under Hips -1
Pose Reaching 4

Table 5: Reward terms.

10 Evaluation

10.1 Real World Tossing

To achieve a pre-grasped state during tossing evaluations, we handed the policy the tennis ball. We count
episodes where the robot falls during the toss as a failure. Finally, we measure the distance from the
location where the ball first lands to the center of the bin, and report a success if it lands within 40cm of the
bin’s center.

10.2 Simulation Ablations

In each episode, a random grasp and toss end-effector trajectory is sampled from our dataset (§ 9.2),
the robot is uniformly randomly initialized in the range of [-5.0cm,5.0cm] for x and y position, and [-
0.1rad,0.1rad] for z orientation, and its initial joint positions are sampled uniformly within 5% of that joints’
full range, centered around the default joint configuration. Position and orientation errors are averaged over
all timesteps, while survival is 1 only if the policy lasts for 17 seconds without a terminal collision. Here, a
terminal collision is defined as any robot part contact that is not the robot’s feet or gripper.

Similar to training, evaluation includes a pose latency of 10ms and the full range of domain randomization
reported in Table 6.

Hyperparameters Values
Init XY Position [-0.1m,0.1m]
Init Z Orientation [-0.05rad,0.05rad]
Joint Damping [0.01,0.5]
Joint Friction [0.0,0.05]
Geometry Friction [0.1,8.0]
Mass Randomization [-0.25,0.25]
Center of Mass Randomization [-0.1m,0.1m]

Table 6: Domain Randomization Hyperparameters.
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All approaches were trained for 4000 iterations, and the performance at checkpoint 4000 is reported. Power
usage report is electrical power usage based on real hardware’s voltages, manufacturers’ reported torque
constants, and the simulation’s motor torques.

11 Misc.

Cost of the system. We report the cost of our entire robot system based on the market price in Table 7,
which is roughly 1/4 of other quadruped manipulation systems in [10, 12]

Item Cost($)

Unitree Go2 Edu Plus 12,500.00
ARX5 Robot Arm 10,000.00
GoPro Hero9 210.99
GoPro Media Mod 79.99
GoPro Max Lens Mod 68.69
iPhone 15 Pro 999.00
Elgato Capture Card 147.34

Total 24,006.01

Table 7: System Cost.
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